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QUANTUM CONCEPT OF THE REARRANGEMENT OF 
A C R Y S T A L  L A T T I C E  

M. D. Gureev and S. I. Mednikov UDC 530.145+538.9 

Using quantum considerations based on the concept of lattice rearrangement waves, we carried out an 

analysis of processes of rearrangement of a crystal lattice occurring on a moving front (interface) of crystal 

rearrangement. For the introduction and quantization of these waves we use the method of 

acoustomechanical analogy and the SommerfeM quantum conditions. We calculate the energies and the 

propagation velocities of the lattice rearrangement waves. Along with quanta having a certain momentum, 

quanta that have a certain angular momentum are introduced into consideration. On the basis of the concepts 

developed, we suggest a new expression for calculating the probability of thermofluctuational processes in a 

crystal. We perform a numerical analysis of the rate of growth of the v-phase in iron in the process of 

a-v-conversion. Satisfactory agreement with experiment is obtained. We discuss the limitations and prospects 

of further development of the concept suggested. For direct experimental verification of the concept we 

propose to investigate the diffraction of electrons and other particles on the lattice rearrangement waves, i.e., 

in the process of phase conversions or disintegration of crystals. 

The theoretical analysis of many physical processes occurring in crystals, for example, phase conversions 

of the first kind, recrystallization, deformation and disintegration on shock loading, etc., is ultimately reduced to 

an analysis of the rearrangement of the crystal lattice. Common to all of the processes indicated is the fact that a 

rearrangement of the lattice occurs as a displacement of the rearrangement front of the substance, i.e., of the 

interfaces that separate the initial and final regions of the crystal (in what follows, without loss of generality, we 

will speak of the initial and final phases). At the present time, to analyze the mobility of interfaces, use is made 

of various atomistic models based on dislocation concepts of the structure of boundaries [1-5 ]. However, despite 

well-known achievements of such an approach, it is also necessary to note its limitation that does not permit one 

to consider the nature of physical processes on an elementary level. In fact, first, the well-known atomistic theories 

are based on a static model of the interface and do not take into account the dynamic structure of the latter [6-8 ], 

which is important for understanding the kinetics of the process, and, second, they ignore the quantum mechanics- 

based representation of a crystal as a system of special waves, i.e., quasiparticles. 

The aim of the present work is to justify the quantum nature of the process of lattice rearrangement, 

determine the energies and the propagation velocities of the lattice rearrangement waves, and apply the results 

obtained to an analysis of a number of basic problems of the physics of phase conversions. 

Before we proceed further, we note the fundamental difference of the concept suggested in the present work 

from the results of [9-11 ], in which the processes of ordering in solid solutions were analyzed with the help of 

the method developed by Bogolyubov in the theory of a nonideal Bose gas [12 ], i.e., the method of the theory of 

phase conversions of the second kind. In this case one need not analyze the mechanics of the motion of interfaces, 

since the conversion occurs simultaneously throughout the entire volume. It is therefore not difficult to introduce 

waves of fluctuations of the order parameter and, what is fundamentally important in the method, to carry out 

computations in a momentum representation. 

In the present work we introduce lattice rearrangement waves to describe the typical case where the lattice 
rearranges on the moving front of conversion. To introduce such waves, use is made of the method of 
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acoustomechanical analogy [13, 14 ]. From the viewpoint of acoustics [15, 16 ], a moving interface can be considered 

as a discontinuity surface, which, incidentally, is evident, since the latter separates phases with different physical 

properties. At the same time, from the results of [14, 17 ] it follows that the discontinuity surface, whose propagation 

is described by a hyperbolic-type equation, represents a wave front, which is a surface of constant action according 

to the acoustomechanical analogy [13, 14]. It is precisely the latter fact that permits one, by analogy with de 

Brogle's approach [18, 19 ], to introduce lattice rearrangement waves. 

According to the principle of least action, the trajectory of a mechanical system (for simplicity we speak 

about a conservative system with one degree of freedom) is de/ermined from the condition of the action extremum 

6 f (P Q - = 0,  (1) 

where P is the momentum; E is the energy; 6Q and 6t  are the variations of the generalized coordinate and the 

time. It seems that this principle should be satisfied also by trajectories intersecting the wave front, i.e., those 

bringing the mechanical system to another state. According to an analysis made in [20, 21 ], such trajectories should 

satisfy the Weierstrass-Erdman condition 

[P6Q - e 6 t  ] = O. (2) 

Here, the square brackets indicate the jump in the quantities on passage across the front. We will write Eq. (2) in 

another form: 

p~q - e6"c = const, (3) 

where p = [P]; 6q = [6Q]; e = [E]; 6r = [6t]. 

It is evident that e is the difference of energies of the system in different phase states, and 63 is the time 

of the transition of the system from one quantum state to another. Therefore, on the basis of the Bohr-Sommerfeld 

principle [19, 22 ], it is possible to identify e with the energy of the quantum of lattice rearrangement and 63 -1 

with its frequency. From this it follows that for the elementary process of the absorption of one quantum of lattice 

rearrangement the constant in expression (3) is equal to the Planck constant h. Such a conclusion agrees with the 

principal postulate of the "old quantum theory," i.e., with the Sommerfeld quantum condition [19, 22], according 

to which the truncated action of p6q is replaced by the Planck constant h each time the system passes from one 

quantum state to another. 
To determine the value of e, we will take the quantity 6q to be equal to the natural parameter of crystals, 

i.e., to the period of the crystal lattice a. As a result, we obtain 

h (4) 
p = - = l ~ G ,  

a 

where G is the vector of the reciprocal lattice. Assuming that the mass of the lattice rearrangement quantum is equal 

to the mass of the ion M, we obtain the following result for the velocity of the lattice rearrangement quantum: 

v i = 7~ G / M .  (5) 

The characteristic values of vi for metals are equal to 1-10 m/sec. We note that the velocity vB, equal numerically 
to vi, was introduced heuristically earlier in [15, 16 ] as the critical group velocity of atoms above which the plastic 

flow of the crystal acquires a stochastic (turbulent) character. This result is evident within the framework of the 

given concept, since the process of generation of lattice rearrangement waves becomes possible when v > vi. 

Similar considerations can be given for the quanta of the rearrangement of the electronic subsystem of a 

crystal 

v e = 1i G / m .  (6) 

Here m is the effective mass of an electron. Equations (3)-  (6) yield the following estimates for the quantities e i 

and ee: 
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7i v i h 2 
e i - - - M v ~ ,  

a a 2 M  

(7) 

h 2 n v~ 2 (8) 
e e - - - -  2 -mVe" 

a a m  

It is evident that Ve and ee are close to the characteristic parameters of the electronic subsystem of the crystal, i.e., 

to the velocity and the Fermi energy, respectively. The estimate of the quantity ei is ( m / M ) l / 2 ~ C O D  = 

1 0 - 2 - - 1 0 - 3 7 i W D ,  where COD is the Debye frequency. 

There is a certain correlation between vi and re.  In actual fact, using the Bohm-Stuver relation for the 
speed of sound [23 ] and taking into account Eqs. (4)-(8), we obtain 

2 
v iv  e = Cs , (9) 

where Cs is the speed of sound. 

In much the same fashion we can construct the whole hierarchy of characteristic velocities, e.g., 

2 (10)  
V i e  s = V M . 

According to [15, 16 ], VM is the maximum group velocity of atoms above which the crystal disintegrates, since the 

pressure P0 -pCsvM (here p is the density) in such a wave exceeds the theoretical strength. 

The results obtained make it possible to also estimate the characteristic dimensions of the regions in the 

crystal in which correlation in the motion of atoms is possible. Evidently, in this case the maximum possible length 

is of greatest interest. The following expression can be given for this length: 

l = h v e / e  i . (11) 

Estimations made by expression (11) give l --- 0.1-1.0 Izm, which agrees with the dimensions of the Frank 

dislocation grid [3 ], as well as with experimentally recorded dimensions of the nuclei of a new phase in crystals 
[6, 24, 25]. 

It is known that the majority of physical processes in crystals occur in a thermofluctuational fashion [1, 

2 ]. The calculation of the probabilities of these processes is based on the theory of absolute rates of reaction [1 ]. 

We know the following estimate for the velocity of the displacement of phase interfaces: 

Vph = c s exp ( -  U / k T )  . (12) 

Here W = exp ( -U/kT)  is the probability of fluctuation; U is the activation energy of lattice rearrangement, 

interpreted as the energy needed to overcome the potential barrier that separates different phases. It is assumed 

for deriving formula (12) that the interface moves in a jumpwise fashion, with Cs being its actual velocity and Vph 

its mean velocity. The main problem in using expressions of type (12) for specific calculations consists in the 

determination of the magnitude of the activation energy U. Actually, according to the theory of absolute rates of 

reactions, an activated complex consists of just a single atom in contradiction to modern concepts of transfer of 
thermal energy in crystals, since during its lifetime an activated complex interacts with 102-103 surrounding atoms, 

i.e., the process has a collective nature [5, 26 ]. Within the framework of the quantum concept of the rearrangement 

of a lattice it is possible to develop a new approach to the analysis of thermofluctuational processes that is free of 
the above shortcomings and is based on the theory of stochastic properties of the energy spectrum of quantum 
systems [27 ]. 

According to Eqs. (2) and (3), during passage of a quantum system from one state to another the action 

acquires the finite increment h, while its energy undergoes a change by a small value fie = E l ,  c S E / E  << 1, where 

E is the characteristic energy of the system (of the crystal). In [27 ] it is shown that an infinitely small change in 
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the energy f E  for stable phase trajectories of dynamic systems does not lead to a finite increment of the action 

p f q  >- h. For the increment of the action to be finite, it is necessary that the phase trajectories corresponding to 

the energies E and E + f E  be statistically independent. For this it is at least necessary that stochastic displacement 

occur along a single generalized coordinate. According to [27 ], the probability of such a process obeys the following 

law: 

W = exp ( -  const N) , (13) 

where N is the number of collisions (scatterings) needed by the system for the phase trajectory with the energy E 

+ fie to become statistically independent of the trajectory with the energy E. 

When calculating N we will proceed from the wave concept of lattice rearrangement. In this case the problem 

of determining N is reduced to the standard problem of the theory of scattering of elementary excitations in a 

crystal. Therefore, according to [23 ], N can be estimated as the ratio of the length of scattering A to the lattice 

period a: 

N = A / a .  (14) 

To determine A we will use the Gruneisen approximation [23 ]. As a result, for the length of the scattering of 

phonons with wave vector equal to G, we obtain (we consider the case of high temperatures T > TD) 

A = cons t /Fe  T . (15) 

Here F = 2 is the Gruneisen parameter; e T is the thermal dilatation of the lattice. Finally, for the probability of 

fluctuation we obtain 

W = exp ( -  const/FET). (16) 

In accordance with the analysis performed in [28 ], in what follows we will take const = 1 in Eq. (16). 

Refinement of the numerical value of this quantity requires the development of a more detailed theory. Comparing 

expressions (12) and (16), for the logarithm of the probability of the thermofluctuational process we obtain 

U / k T  = l / F e  T.  (17) 

We note that Eq. (17) can be obtained formally by performing identical transformations of the left-hand 

side of Eq. (17) and taking into account that U "-fa  2, k T  = fx~., eT ----- x~' /a 2, where f is the quasielastic force; x~ 

is the mean square of thermal atomic vibrations [29 ]. 

Let us demonstrate the results obtained in relation to the calculation of the rate of growth of the ),-phase 

during a-y-conversion in iron. Even though this problem was the subject of discussions among specialists in physical 

metallurgy, it cannot be regarded as solved [1, 30]. First, let us estimate the actual velocity of the interface. In 

this case we will proceed from the concept of cooperative rearrangement of the lattice [28, 31 ], according to which 

each atom shifts a distance aeph in passing to a new phase, where eph is the phase dilatation. The time during which 

the phase rearrangement of the lattice occurs will be estimated as ftph = h/ee,  where e e is determined from Eq. 

(8). With allowance for Eqs. (12), (16), and (17) we finally obtain 

aephee 
vP h = h e x p ( -  1/reT).  (18) 

In Eq. (18) the combination aephee/h will be defined as the speed of sound Cs = 3.103 m/sec and the combination 

FeT as (fla + fir) T, where fia and fir are the coefficients of linear thermal expansion of the a- and y-phase, 
respectively. According to [32 ], fia = 1.9.10 -5 K -1, fir = 2.2.10 -5 K -1. Finally, from Eq. (18) we obtain that the 
rate of growth of the y-phase in iron at T = 1195 K is equal to vph = 5"10 -3 mm/sec, which agrees well with 

experimental data [33 ]. 
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There is still much experimental data relating to various physical processes in crystals that can be 

constructively considered within the framework of the concept developed, but an analysis of the limitations and the 

means for further development of this concept seems to be more urgent. In the present work the quantization of 

the lattice rearrangement waves is done by superposition of quantum conditions in a manner similar to that used 

in the "old quantum mechanics" rather than by solving an eigenvalue problem as is the case in the Schr/Jdinger 

method. This makes the interpretation of the processes easier (wave front), which makes it possible to obtain many 
results directly on the basis of intuitive considerations without losing the depth of the analysis. Therefore, in the 
future, lattice rearrangement waves should be analyzed as solutions of the SchrSdinger equation for a crystal. 

Speaking of experimental confirmation of the concept developed, it should be noted that the existence of 

lattice rearrangement waves can be proved directly by experiments in which phenomena of interference or 

diffraction of waves occur. These data can be obtained by employing standard methods used for the analysis of 

the structure and the energy spectrum of elementary excitations of a crystal. Experiments in this field are few in 

number. For example, the authors of [34 ] revealed an abnormal decrease of the Debye-Waller  factor in the vicinity 

of the point of the martensitic transformation. Interesting data were obtained in [15, 16 ] on the basis of acoustic 

emission from zones of disintegration of crystals. In particular, the conclusion was drawn that crystals disintegrate 

in a spiral fashion, i.e., through formation of disk cracks. A detailed analysis of this phenomenon lies outside the 

scope of the present work, but nevertheless it would be logical to suppose that this problem can be analyzed 

constructively on the basis of the concept developed. However, it is necessary to assume for this purpose that along 
with lattice rearrangement quanta having a certain momentum there are also quanta with a certain angular 

momentum (multiple of the Planck constant h). An analysis of such (rotational) quanta can be made by the method 

developed above. Therefore, for the angular frequencies of rotational quanta we may write down immediately 

Qi = el~h, (19) 

~e = %/h. (20) 

The quantum concept of lattice rearrangement suggested in the present work allows the following 

conclusions to be drawn: 

1) the rearrangement of a crystal lattice occurs in a discrete fashion by emission of lattice rearrangement 
quanta by one phase and their absorption by the other; 

2) the energy and propagation velocity of lattice rearrangement quanta are expressed in terms of parameters 

of elementary excitations; 

3) within the f ramework of the quantum concept of latt ice r ea r rangement  one can consider  

thermofluctuational processes; the logarithm of the probability of thermofluctuational processes is determined by 

the reciprocal of the lattice dilatation; 

4) to verify experimentally and refine the propositions of the concept suggested, it is possible to investigate 

the diffraction of elementary particles (electrons, neutrons) or x-rays at lattice rearrangement waves, i.e., in the 
process of phase conversions or disintegration. 
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